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The results of the calculations are presented in Figs. i and 2. The quantities ~(~) 
and m(T) multiplied by 4~ are indicated along the vertical axes and, in addition, �9 = t(l + 
t) -z. This substitution permits studying the behavior of the functions indicated over the 
entire time interval. Curves 1-3 correspond to V = i, I0, and 20 m/sec. 

LITERATURE CITED 

i. I.I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems in the Theory of Elasticity 
for Nonclassical Regions [in Russian], Nauka, Moscow (1979)o 

2. I.I. Vorovich, V. M. Aleksandrov, and V. A. Babeshko, Nonclassical Mixed Problems in 
the Theory of Elasticity [in Russian], Nauka, Moscow (1974)o 

3. V.A. Babeshko, "New method in the theory of three-dimensional problems," Dokl. Akad. 
Nauk SSSR, 242, No. 1 (1978). 

4. Ao No Tikhnov and V. Ya. Arsenin, Methods for Solving Improperly Posed Problems [in Rus- 
sian], Nauka, Moscow (1979). 

STABILITY OF WELL WALLS 

G. P. Cherepanov UDC 622.24.026.3.001 + 539.3 

I. Introduction. The scientific--technical problem of superdeep drilling is extremely 
difficult. Modern technology for constructing wells [1-3] consists of repeating the follow- 
ing cycle many times: drilling the bottom hole of a well with a special bit -- extracting 
pieces of the fractured rock with a flushing liquid -- wear or breakage of the drilling equip- 
ment and its replacement, usually including raising and lowering operations for the entire 
column of drillpipes. 

Reinforcement of the walls of superdeep wells (exceeding 6 km) with casing columns be- 
comes technically very complicated due to the loss of stability of the well walls, their col- 
lapse, and as a result, the large increase in the transverse cross section. In this case, 
the presence of the hydraulic pressure of the column of washing liquid serves as an important 
stabilizing factor. Clay and other additives in this liquid, by plugging pores, lead to the 
formation of a dense crust on the walls, hereby hermetically sealing the well. In what fol- 
lows, we examine only vertical wells that are not protected by a casing column near the bot- 
tom hole at a distance, at least, of the order of i00 diameters of the well. Percolation of 
the liquid into the rock is neglected. 

A very important factor under these conditions is the pressure from the above-lying rock. 
Considerable technological difficulties in superdeep drilling also arise from the increase in ~ 
temperature (approximately by 20~ for each kilometer). 

2. Local Instability of the Walls of a Circular Well. The well is a cylindrical cavity, 
r < ro, 0 < z < H in the earth's crust z < H, where r and z cylindrical coordinates (z coin- 
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tides with the axis of the well, Fig. i). The bottom hole of the well (the end-face of the 
cylinder is at z = 0) breaks down under the action of the teeth on the drill bit, which is 
pressed into and rotates around the axis of the well. The walls of the well and of the bot- 
tom hole break down at great depths under the rock pressure, so that the shape of the well 
turns out to be very different from the shape indicated. We shall examine this process of 
natural breakdown far from the bottom hole (in practice, at distances greater than 5ro). 

We shall denote by q the unperturbed vertical rock pressure, and by nq the unperturbed 
lateral rock pressure; the lateral thrust coefficient ~ can be less than or greater than one 
depending on the geotectonic conditions. 

Far from the well we have 

Oz : - - q ,  o r = o o = - - ~ q  (q > 0). (2 .1)  

The quantity q equals pgH, where g is the acceleration of gravity, 0 is the average den- 
sity of above-lying rocks, H is the distance of the point being examined from the earth's sur- 
face-(on the average pg - 3.5 g/cma). 

We shall examine the initial circular contourof the well, created by the drilling in- 
strument (its transverse cross section is shown in Fig. Ib). Some point 0 on the wall of 
this wellwill be subjected to triaxial compression by the stresses 

~ = - - q ,  ~r =--P, Oo =P--2~q" (2.2) 

Here p is the hydrostatic pressure of the liquid in the well (p - pHgH, where for water PH ~ 
i g/cm s, while for clay solutions OHg can attain 2.5 g/cmS)o The peripheral stress o e is ob- 
tained from a solution of the corresponding problem in the theory of elasticity for a circu- 
lar opening [4]. 

Two cases are possible: loOl > lozl > [or[, when p-- 2qq < -q, i.e., (2q-- l)q>p; 

I~zl>lo0l>lorl, when p-- 2~q >--q, i.e., (2~ -- l)q < po 

In these cases, the nature of the local breakdown at the point 0 will be different and 
the process of cavity formation will occur differently~ 

The criterion for local fracture can be represented as a surface f(Oz, Or, o 8) = 0, en- 
compassing the origin of coordinates in the space OzOrOO;': In,the region of compressive 
Stresses of interest here Oz'~O, Or<O,  Iff0<O mr -Iffz]> t6r[ and Io01>lOrl the surface can be 
represented [5, 6] as follows: 

for Io01 > Io~l > l o ~ l  o0- -  - ' ~  + 6((rz + '~), (2.3) 

Here 6 and o c are empirical constants, chosen so as to describe best the experimental data in 
the range of stresses studied. 

The number 6, similar to the Poisson coefficient, satisfies the inequality 0~8~I/2. 
Without making a large error, it can be taken as equal to 1/2 (this corresponds to the ex- 
perimental fact that the strength under hydrostatic compression, when o r = o z = o8, exceeds 
by many times the strength under uniaxial compression). 

Substituting (2.2) into (2.3), we find the following condition for local fracture at the 

point O: 

mr 2 q q - - p > q > p  (2q--  6 )q= oe 5 p ( ~  + 6), (2.4)  
mr (2~--  t ) q < p < ~ q  q( i - -26q)  = o c. 

For (2~ -- l)q > p, the displacement at the point 0 of the well wall at the time of local 
fracture will occur along the surface parallel to the z axis, and for (2~ -- l)q < p along the 
surface inclined to the z axis at some angle and parallel to the tangent to the circular con- 
tour of the well at the point O. 

We shall investigate the stability of the shape of the circular well contour with re- 
spect to small perturbations of the contour shape, which are completely unavoidable in the 
process of constructing the well. For example, assume that near the point 0 there is a very 
small depression (Fig. ib). This depression leads to additional concentration of stresses 
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in the vicinity of this point, as a result of which, as the rock pressure increases the local 
fracture in it occurs earlier than at other points of the circular well contour. Evidently, 
in view of the continuous increase in the concentration of stress in the growing depression 
the process of local fracture will be a self-sustaining process until the system passes into 
a stable equilibrium state (i.e., when the well assumes a new shape, stable relative to the 
unavoidable small perturbations). 

We emphasize that the rocks studied have the following property: formation of a region 
with a limiting state indicates separation into small disconnected particles at all points 
of this region; these particles are flushed out by the flushing drilling liquid, until the 
region of the limiting state degenerates into some surface, which will be the boundary of the 
body. Further flushing of rock is impossible, since the remaining volume will be continuous 
and elastic. For this reason, under unchanged external conditions, the limiting boundary of 
the body obtained will be unchanged and it is natural to refer to it as the equilibrium shape 
of the body. 

According to (2.4), the hydrostatic pressure of the fluid affects only the stability of 
the circular walls and the cavern formation of the first kind; cavern formation of the second 
kind does not depend on the pressure of the liquid in the circular well. 

Taking into account the stratified (layered) structure of the earth's crust, it is not 
difficult to imagine that the phenomenon of loss of stability and cavern formation described 
above can occur also at small depths in layers with little strength. For this reason, with 
optimal control of drilling, it should be kept in mind that by choosing the control parame- 
ter p, it is possible to avoid cavern formation of the first kind, for which p(l + 6) > 
(2~ -- ~)q -- ~c must be satisfied in the corresponding layer. Cavern formation of the second 
kind, according to the second relation (204), is practically an uncontrollable process (only 
the formation of a clay crust on the walls of the well under the action of the drilling liquid 
has any effect on ~c and ~ of the rock)~ 

3. Formulation of the Problem of Equilibrium Shapes of Elastic Bodies. We shall exam- 
ine the phenomenon of cavern formation of the first kind, occurring under conditions close to 
planar deformation in the xy plane of the transverse cross section of the well. We shall 
study the possible equilibrium states. The equilibrium shape of an elastic body is a shape 
for which all boundary points of the body have the same possibility for failure, i.e., when 
the stress concentration is the same on all points of the boundary. These are so-called 
"equal-strength, bodies [7, 8]. 

We shall denote by L the unknown "equal-strength" contour of an elastic body in the com- 
plex z = x + iy plane (Fig. 2). We have the following boundary conditions: 

on contour L 

for z-+ oo 

on = --P, ~.~ = 0, (3.1) 
~ t  : --(; ---- c o n s t ;  

~x = ~y =--~q, Txy = 0. (3.2) 

Here t and n are the tangential and normal to the contour (forming a right-handed system nt). 
Taking into account the noncircular shape of the cavity, according to (2.3), we have 
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for [at[ ~ ]crz[ f> ]on] on eawrn walls, i.e., 

for ~ / > ] q +  w(p + a - - 2 q q ) ] ~ p ,  

cr = [1/(t - -  v6) l [o  c + 6p(t  + v) + 8q(t - -  2~q)]; 

for l~zl ~ It~t] 71- Icrnl on cavern walls, iae., 

for !q + v(p + a - -  2tlq)l >/ ~ ~ p,  

a~ = - - %  + 6(z,~ + at), 
a = --p + (q -- o c -- 2v~lq)/(6-- v) 

(3.3) 

(v is Poisson's coefficient). It was assumed here that the stress field sought in the body 
is a sum of an unperturbed uniform field o~ o ~ t----~q, o~=--q and the nonuniform field aikis 

i 
caused by the shaft, under conditions of planar deformation, so that o:=w(a$+~t). 

We shall represent the stress components in terms of the Kolosov--Muskhelishvili poten- 
tials r and T(z): 

a ~ + % = 4 R e @ ( z )  ( z = z + i y ) ,  

% - -  o~ + 2it~y = 2~q~'(z) + ~I'(z)]. 

According to (3.2), we have 

for  z ~ oo (D(z) ---- - - ( t / 2 ) t l q  7+- O(z-~), 1F(z) = O(z-2).  ( 3 . 4 )  

Using the well-known relations 

(r t -- an + 2iTtn = e2i~(~ v -- a x + 2iTxV), 

w h e r e  a i s  t h e  a n g l e  b e t w e e n  n a n d  x ( m e a s u r e d  f r o m  x t o  n ) ,  t h e  b o u n d a r y  c o n d i t i o n s  ( 3 . 1 )  
o n  t h e  c o u n t o u r  L c a n  b e  w r i t t e n  i n  t h e  f o r m  

4 Re @(z) ---- - - o  - -  p ,  

z ~ ' ( z )  + ~(z )  = ( t /2 ) (p  - -  a)e - 2 ~  
(3.5) 

4. Solution of the Boundary-Value Problem within the Class of Bounded Potentials. We 
first seek the solution of this problem in the class of everywhere bounded potentials ~(z) 
and T(z) and in the class of contours L with infinite branches. In this class of functions, 
according to the first boundary condition (3.5), the potential ~(z) will be everywhere con- 
stant; 

�9 (z) = - - 0 / 4 ) ( ~  + p), ( 4 . 1 )  

and, in addition, from the conditions at infinity (3.4) 

= 2 ~ q - - p  

and, according to Eq. (3.3), the stress state at the walls of the "equal-strength" well 
sought will be as follows: 

~ - - - - - - P ,  ~t = - - 2 t l q  ~ - P ,  c~z------q,  
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where 

( 2 q - - 6 ) q =  o~-Sp(l  + 6) ~r 2 q q - - p > ~ q > ~ p ,  (4 .2)  
( i - -2q6)q  = oc ~r q > ~ 2 q q - - p > ~ p .  

Substituting (4.1) into (3.5), we obtain 

2W(z) = (p -- o)e -2i~ (z ~ L) (4.3) 

Let us make a conformal transformation of the exterior of the contour L in the z plane 
on the exterior of the unit circle [~1 > 1 in the parametric plane 5 with the help of the 
analytic function m(5), which must be determined: z = m(~). 

Let us determine e ~i~. We shall give the increment at the point z in the direction of 
the normal to the contour L (see Fig. 2) 

dz = e~ldzl. ( 4 . 4 )  

The corresponding point in the plane ~, in view of the conformal nature of the transfor- 
mation, will be displaced along the radius 

d~ = ~ld~l. (4.5) 

With the help of (4.4) and (3.5), we find 

e ~  ( d z )  ~ ( ( o ' d ~ )  2 ~ ' ( $ )  (4.6) 
= ~ = i~ , l ld~  I = ~,(;) .  

The boundary-value problem (4.3) on the ~ plane is written in the form 

2r = (p -- o)o/(~) ~r I~l = ~. (4~ 

Here @(~)= ~'(~)~[~($)1, for ~-+~ ,(~)=O(~), ~'(~)=O(~) 

Let the contour L sought have 2n infinite branches, which correspond to 2n simple poles 
of the functions m'(~) and @(~) at the points ~ = ~k and g = --~k: 

~ = e ~ ( k  = 1, 2 ,3 ,  . . . ,  n). 

The general solution of the boundary-value problem (4.7) in the class of functions indi- 
cated has the form 

co' (~)= Ah ~ + Bh ~ } + Co, 

where Co, Ak, and B k are arbitrary complex constants. 

Since the function ~(~) must be single-valued in circumscribing the unit circle, B k = A k. 

Integrating, we find the function ~(~) 

n 

k=1~ ~ C = C o §  Ah . ( 4 . 8 )  

The function In [(~ -- ~k)/(~ + ~k)] is single-valued in the plane ~ with a cut, connect- 
ing the points ~ = ~k and ~ = --~k inside the unit circle. 

Let the contour L be symmetrical relative to the real axis. We shall assume that the 
real axis of the ~ plane goes over to the real axis of the z plane in the vicinity of a 
point at infinity. From here it follows that the value of C is real; real and_imaginary ~k 
correspond to real coefficients Ak, while each pair of conjugate poles ~k and ~k correspond 
to a pair of conjugate complex coefficients A k and A k- 

Thus, the family of contours L sought, defined by the functions ~(~) in (4.8), depends 
on 2N_arbitrary constants A k and ~k, where the same index k corresponds to four complex poles 
(~k, ~k, --~k,--~k) and a pair of real (~k, --~k) or imaginary (~k, ~k) poles. The transforma- 
tion, effectuated by this function, is not a single sheet transformation; the exterior of 
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the circle I~I > 1 corresponds to a two-sheet Riemann surface in the z plane with symmetrical 
infinite branches on the second sheet. 

Let us examine the physical meaning of the solution obtained as an example. Assume that 
there are only two poles; at the points ~ = ~ = 1 and ~ =--~, =--i. In this case, ac- 
cording to (4.8), the transformation is defined by the function 

where C and ~ are arbitrary positive parameters. In this case, the unit circle ~ = e~ 
over into the contour L with self-intersecting~anches, whose equation has the form 

=C(sin~--~%)(%>O,C>O), 

where a = I for 0<~<~ and ~ =--i for ~<~<2~. 

It is natural to assume that for ~ = q-~/2 y=q_-_~, from which we have 

goes 

(4.9) 

C ~ r0 
I ~%" 

i-- T 

Therefore, the parameter X must satisfy the inequality 0 < ~ < 2/~. 

The x and y axes are the symmetry axes for the contour L. Figure 3 presents the family 
of equilibrium contours L, constructed in the right half plane according to Eqs. (4.9) with 
values % = 0, 0.05, 0.i, and 0.2 (curves i-4~ respectively). The self-intersecting branches 
are shown by the dashed lines; they are located on the second sheet of the two-sheet Riemann 
surface z. 

The solution constructed describes the successive growth of the cavern from a circular 
opening as a result of infinitely small starting failures at the points y = 0, x = • of the 
opening. The presence of regions of self-intersection shows that there are always zones of 
the supercritical state, not flushed out by the liquid, on the continuation of the cavern in- 
to the body. The equilibrium contours of the cavern obtained will, evidently, be locally un- 
stable and can transform randomly into any of the equilibrium shapes, described by the gen- 
eral solution (4.8). According to this solution, there exist infinitely many forms of equi- 
librium caverns with the oddest configurations and with an arbitrary number of "canyons." 
All these shapes are locally unstable. 

We note that the two-sheet Riemann surface was already used previously as a physical 
space in some hydrodynamic papers. This is primarily the Efros--Dzhil'barg--Rocca model in the 
theory of cavitation [9, 10]. The parameter ~ in solution (4.9) plays the role of "time," so 
that it may be assumed that this solution describes the growth of a finite perturbation (see, 
e.g., [ii] on the growth of a "tongue" of liquid from a small perturbation of an unstable 
equilibrium form of two liquids). 

5. Solution of the Boundary-Value Problem on the Class of Unfounded Potentials. We 
shall now study the solution of the starting problem (3.5) in the class of bounded contours 
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L with return points and in the class of unbounded at these points potentials ~(z) and ~(z). 
At the continuation of return points in the body, the stresses are infinite and for this rea- 
son in the vicinity of such a point there is a zone of supercritical state, where the rock 
is fractured. It follows from the preceding discussion that the formation of such zones is 

unavoidable in the growth of caverns. 

In what follows, it is assumed that the characteristic linear size of regions of the 
limiting and superlimiting state in the vicinity of the return point is small compared to the 
characteristic linear dimension of the cavern. This assumption is similar to the assumption 
of a fine structure in the theory of brittle cracks, and it permits using elastic solutions 
with integrable singularities. 

Assume that the contour sought L has n return points, which in the parametric plane 
corresponds to thepoints ~ = ~ = e i~ on the unit circle, where k = i, 2, ..., n. The root 
singularity of the complex potentials at the return point in the z plane corresponds to a 
simple pole at the corresponding point ~k in the ~ plane, since 

~'(~) = 0, mr ~ - .  ~ ~(~) = ~ ( ~ )  + 0[ (~  - ~)~1. 
S o l v i n g  t h e  D i r i c h l e t  p r o b l e m  f o r  t h e  e x t e r i o r  o f  t h e  u n i t  c i r c l e  I~1 > 1 i n  t h e  c l a s s  

o f  f u n c t i o n s  i n d i c a t e d ,  a c c o r d i n g  t o  t h e  f i r s t  b o u n d a r y  c o n d i t i o n  ( 3 . 5 ) ,  we o b t a i n  

q~ ($) = - -  T (~ ~- p) "~- Ah ~_--~,  q~ (~) ----- (i!) [co (~)1, 
k = l  

where A~, A=, ..., A n are some arbitrary real constants, satisfying, 
following relations; 

'~ ~ A~.5, = 0. Ak = I ((~ + P - -  2~1q), - .  
h=l h=l 

(5.1) 

according to (3.4), the 

Let us introduce the new functions 

i o)' Z-n A ~  %(~_) = T ( p - -  o) (~)-- 2c0 (~) z.~ (~--~F'  (5.2) 

analytic in the region exterior to the unit circle I~I > i and bounded at ~ § =. 

Substituting @(~)from(5.1) into the second condition (3.5) and using (4.6), we obtain 
the following boundary-value problem~ 

~(~) = %(0 ~r  I~[ = 1, 

w h e r e  
~(~) = ~'(~)w[~(~)]. 

The general solution of this boundary-value problem in the class of functions bounded 
at infinity and, according to (5.2), having second-order poles at the points ~ = 5k, has the 
form 

EBb: 
n 71 

- ~ { ~ + ~- 
, ( o =  - + h=1 ~-~h h=1 

~ ( ~ ) = ~ B k ~ + ~  ~l  (~+~h, ~ 
(5.3) 

where B k and C k are some arbitrary complex constants. 

Since the function • has been found, relation (5.2) represents a linear differential 
first-order equation for the function sought m(~). An investigation of the analytic nature 
of this solution shows that for o ~= p, at the points ~ = ~k the function ~(~) has an essen- 
tial singularity of the type (i/(~ -- ~k ). In this problem, this singularity has no physical 
significance, so that we must set 

(5.4) 
O-----p. 
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In addition, the stress state on the cavity wall, according to (3.3), will be as fol- 
lows: 

an = ~ t  = - - P ,  % = - - q + 2 v ( ~ q - - P ) ,  
and ,  i n  a d d i t i o n ,  f o r  q(l - -  2w~) > p( l  - -  2~) 

q(l - -  2v~]) A- 2 p ( v  - -  6) = ~, 

Based on (5.2)-(5.4), the function sought ~(~) has the form 

(5.5) 

(5.6) 

where B k' and Ck v are arbitrary complex constants. The constants Ak, Bk' , Ck' , and ~k must 
satisfy only the conditions m'(~k) = 0 and the condition for the conformal transformation 
Im'(~)l > 0 for ]~I > I, but other than that they are arbitrary~ For this reason, there are 
infinitely many forms of equilibrium caverns with return points~ 

We shall show that all of these states will be locally unstable relative to any infi- 
nitely small smooth changes in the shape of the contour= In the vicinity of an infinitely 
small perturbation in the shape of the contour ("tongue" in Fig. 4), based on the "micro- 
scope principle" [6], it may be assumed that in the unperturbed state the body occupied the 
upper half-space n > 0. It is necessary to determine the stress field in the upper half- 
space with a cutout having a smooth shape (without corners and return points), if the stresses 
o n ffi o t •--p act at infinity, while the loads Onl =-p, rtlnl = O, where nl and tl are the 
normal and tangential to the perturbed boundary contour, are applied to the entire changed 
boundary. The stress fields sought at all points of the body, evidently, will represent hy- 
drostatic compression with magnitude p; in particular, on the cutout, as in the unperturbed 
state, Onx ffi otl •--P as before. Therefore, infinitely small smooth perturbations of equi- 
librium forms constructed at this point do not lead to stress concentration and progressive 
local fracture, i,e., the equilibrium forms obtained will be locally stable. 

Without analyzing the more general solution (5.6), we shall present only some symmetri- 
cal particular cases. 

Two Return Points. In this case, 

+ ( 0  = - ~ n q  + ~ :  i '  ~ (~) = T z ~ + 

and the contour L represents a crack like cavity of length 2Z. 

Four Symmetrical Return Points. In this case, 

3(+) 
1 P - nq co (~) = . - f r o  ~ + 

+ (~) = - -  7 nq  + ~4 _-----~, 

and the contour L is an astroid 
x ~13 -F y2/3 = (2ro)2/3, 

whose shortest distance from the origin of coordinates equals ro. 

Symmetrical Countour with 2n Return Points. In this case, 

t P - - ~ l q  2n- - I  [ 1 ] 
+ ( ; )  = - -  ~ -  n q  + . . . .  o~ (~) = ~ ro ; + . ~2n __ t'  2n . (2n -- 1) ~n-f 
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and the contour L is a hypocycloid 

2 [ 1 X -- 2n --~ ro cos qc, cos (2n -- 1) 2n - -  1 

2 n - - l [  1 s in  (2n - -  '1) qo] (0 < ~ < 2n),  Y = 2n - - 2  ro sinq~ -- 2n -- ! 

whose shortest distance from the origin of coordinates equals ro. It is natural to assume 
that the quantity ro corresponds to the radius of the initial circular well, so that the con- 
tour of the stable cavern formed for n > 1 touches the starting circular contour at 2n points. 

The potential @(~) is determined from the functions ~(~) and m(~) found as follows; 

~(~)  = - ~ ' ( ~ ) ~ ( ~ 1 ~ ) .  

6. Limiting Well Depth. The results obtained above lead to the following picture of 
the development of caverns from the starting wellso In this formulation of the problem, the 
well depth H (the loading parameter) will be the analog of time. For fixed parameters Oc, 
n, 6, ~, pg, PHg, the cavern growth process is determined by the quantity H. We shall exam- 
ine this processo 

According to Eqs. (4.2), (~.5), the following three variants of fracture are possible; 

variant I 

variant II 

variant III 

(2~1 - -  6)pgH --  ( i  -+- 6)(o~gH + Pa) ---" ~ 

( i  7 2~16) 9gH. ---- ~;  

( 6o l )  

( 6 . 2 )  

( i  - -  2vq)pgH + 2(w - -  8 ) ( p u g H  J r  p~) = oc 

(q = og~r, p = o ~ g H  + p o). 

Here Pa is the additional pressure of the drilling liquid on the earth's surface. 

The variants correspond to the following values of H: 

(6 .3 )  

% + p,~ (i + 6) 
HI  ---- pg (2~l -- 6) -- Prig (I q-~; (6 .4 )  

H n  ----- Pg (t - -  2NO); ( 6 . 5 )  

% - -  2p. (v - -  6) ( 6 . 6 )  
HIII= @g(l -- 2vq)~ 2PHg(w -- ~)" 

Only positive values of H have any physical meaning. For this reason, for negative val- 
ues of HI, HII or HIII, the corresponding fracture variant is not realized. 

The formation of the cavern, evidently, begins at depth H = H,, equal to 

H .  = r a in  (Hz, H n ) .  ( 6 . 7 )  

In the process of its development at H = H,, the cavern goes from an initial circular 
form through a set of continuously changing and locally unstable equilibrium forms, described 
by the solutions in Sec. 4. The rate of growth of the cavern at this stage is determined by 
the velocity of the drilling liquid flushing out the fractured particles. In this formula- 
tion of the problem, this velocity can be assumed to be infinite. For large deviations from 
the initial circular form, the unstable nonequilibrium forms with infinite branches (Seco 4) 
are no longer real due to the presence of large self-compression zones. It is natural to as- 
sume that the final stage of the development of the cavern at H = H, will be locally stable 
equilibrium forms with return points (Sec. 5). Evidently, this stage will be stable and in equi- 
librium as a whole, if HIII > H, = min (HI, HII) ; in this case, the elastic system will go 
over into one of the stable states, described by the solutions in Sec. 5. In this case, the 
cavern formed will not develop until the increasing depth of the well attains the magnitude 
H = HIIIo Further increase in depth, greater than HIII, is impossible, since it will be ac- 
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companied by continuous and unbounded breakdown of the cavern walls according to criterion 
(6.3). Thus, in the case examined, the limiting depth of the well H = H** equals HIII; a 
greater drilling depth is impossible for the technology examined. 

If, on the other hand, HIII < H, = min (HI, HII) , then the development of the cavern at 
H = H, is continuous, since the elastic states in Sec. 5, according to (6.3), in this case 
will be nonequilibrium, supercritical. In this case, the limiting depth of the well H** 
equals H,. 

Thus, we have the following general result: 

H** = max ( H i l l , / f . )  = max [HIII, min  (H~, HII)]~ 

L e t  u s  g i v e  an  e x a m p l e .  L e t  q = 1 / 2 ,  v = 1 / 3 ,  6 = 1 / 2 ,  Pu = 0 .  
ing to (6.4)-(6.6), we have 

HI  = 2 a J ( p - - 3 p ~ ) g ,  H n  = 2%/pg, g m  = 3 % / ( 2 p - - O ~ ) g  

As c a n  b e  s e e n ,  f a i l u r e  v a r i a n t  I c a n  be  r e a l i z e d  o n l y  f o r  p > 3OH, w h i l e  v a r i a n t  I I I  
c a n  be  r e a l i z e d  o n l y  f o r  20 > PH" From h e r e ,  a c c o r d i n g  t o  E q s .  (6 ' .7 )  and  ( 6 . 8 ) ,  we f i n d  t h e  
s t a r t i n g  d e p t h  o f  t h e  c a v e r n  f o r m a t i o n  and t h e  l i m i t i n g  d r i l l i n g  d e p t h ~  

06 
H. ---- -__2 pg ,: 

2~c t 
p-~ for p > 2OH and p < T ~ "  

3o'r 
f o r  2 9 H > p > 4 p H .  (2p - p . )  g 

(6.8) 

In this case, accord- 

For example, for og = 3 g/cm m, PHg = 1.5 g/cm 3. 

o 
H ,  = H** = -~- ~c. 103m. 

From here, with o c = 30 kglmm 2 (granite), H** = 20 km, while for o c = 0.003 kglmm 2 
(sand) H** = 2 m. As is evident, the strength of the rock plays a fundamental role in the 
design of superdeep wells. 

7. Stressed State in the Vicinity of the Bottom Hole of a Well. Let us assume that the 
well walls are reinforced in the process of drilling right down to the bottom hole (cementing, 
casing columns, etc.). In this case, in order to forecast the limiting drilling depth, it is 
necessary to know the stress state in the vicinity of the bottom hole of a reinforced well. 
This is also necessary in order to study the processes of local fracture under the teeth in 
the drill bit during drilling, as well as to determine the coefficient of lateral thrust q. 
It is natural to measure the latter from the measurements of elastic deformations of a core 
sample when it is extracted from the bottom hole at the earth's surface, and for this it is 
necessary to fix strain gauges to it before cutting the core sample from the bottom hole. 

Thus, let us assume that we have an axisymmetrical cavity in an infinite elastic space, 
and the shape of the cavity is a semiinfinite circular cylinder with a rounded end-face L 
(bottom hole of the well). A constant hydrostatic pressure (o n =--p, Tnt = 0) acts on L and 
the rest of the boundary of the cavity is rigidly fixed, so that all displacements vanish on 
it. At large distances from the bottom hole constant stresses o z =--q, o r = 0 8 =--nq act 
(Fig. 5). It is necessary to determine the stresses o t and 0 8 on the end-face L. 

Let us represent the elastic stress field sought Oik and displacements u i in the form 
t 0 " t 

o~ = - -  p6~  + ~i~, ui = ui + u~, 

where ui ~ correspond to the state of hydrostatic compression by pressure p. In this case, 
the following boundary conditions will be valid for the fields marked with the prime: 

i ! 

On -~- Tnt ~ 0 on L, 
! 

' OUz  I - -  2v Our = O, - -  - -  p 
o'--f #z B 

w h e r e  r = r o  on t h e  r e m a i n i n g  b o u n d a r y  o f  t h e  c a v i t y ,  w h e r e  E i s  Y o u n g ' s  m o d u l u s .  

(7,2) 
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Far from the cavity, a uniform stress field acts: 
i r l 

a ~ = a o = - - ~ l q + p ,  a z = - - q - } - P .  
We shall examine a closed surface 2, consisting of the boundary of the cavity, 

inder r = R, and the surfaces z = +Ho, where R>>1"0 and H0>>r0 (Fig. 5). 

From the condition of equilibrium of an elastic body within Z, we have 

(7.2) 

the cyl- 

- - h  

S ' 2 a r z  ]r=r o dz = r o (q - -  p). 
- - o o  

(7.3) 

According to the theory of invariant r integrals [6] 

S (  l I I �9 
U' nz - -  OnU,.z - -  <YntUt,z) d]~ = O. 

y. 

Here U' is the elastic potential of unit volume for the field with the primes; n and t, di- 
rections of the normal and the tangent to the contour of the radial section Z; nz, component 
of the vector normal along the z axis. 

From here, based on (7.1)-(7.3), we obtain the equation 

t U'n:dL U' - -  a ~ u z  ~)rdr 
2 ~  . ' 

L �9 0 .J : = H o  

' ' , 1--2v o ,  
- -  (U'--~zU:,z) rdr -~ --~--prT,(q--p). 

z= -- H 0 

Using the elementary solutions, we have at z ffi Ho 

(7.4) 

' ' l - - v  I 
U '  - -  ~ = u + , = =  ~ ( p  - -  , l q )  ~ - -  ~ ( p  - -  q)~,+ 

and for z = --Ho 

U !  i �9 
-- ~ZUZ,Z ~ 

E C t + v )  

Substituting these values into Eq. (7.4), we obtain 

YL U'nflL=--Er~ ~ { _ T t ( i - - 2 v )  p"--? 2 p q ( t - - v ) ( l - - T  I)-+-q2 [rl2 ( I - -v)  .~.! 1 +-~- v i  (v --1] -:- w~])2]i (7.5) 

Equation (7.5) can be used to estimate the stresses on the bottom hole of the well. For 
this, we shall first examine the equal-strength bottom hole, for which the following condi- 
tions on L will be validt 
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~0 ~ (lt ~ --(Y ~-~ COnSt 

and, therefore, 

�9 ' ' U' h~( on-----O, ~ 0 = a t = a - - p ,  = ~ -- p) '  ---- const. 

From here, with the help of Eqs. (7.5), we obtain the stress o sought on the equal- 
strength bottom hole 

' { +(' [ ' ' 11 ~=P-4"V---i--~vv - -  + 2 p q ( l - - ~ ) ( t - - ~ ) ' q - q 2  ~ n ( t - - v )  2 t + V  ( v - ~ q - v ~ ) ~  ~/n. 

In those cases when the radicand is negative, the equal strength bottom hole does not 
exist. 

Let us examine some limiting particular cases of the existance of an equal-strength bot- 
tom hole; for ~>>I, p =0 ~ =~q~2v/(l +v), for q = 0 it does not exist, and for n = 0, 
p = 0 it does not exist. 

In the most realistic ease ~ = 1/3 and n = 1/2, we have 

]//-p 1 I (...~)'-' ~ ' / P  ' I (qP.~_) ~ (706) 
o = p - 4 - P  4 2 = P + q  q 2 4 

and the equal-strength bottom hole exists in the range 

pn (I -1-- -r~) > p > pn 

usually realized in practice. 

From physical considerations, for a different form of the bottom hole, the stresses sat- 
isfy the inequalities 

max(oo,  a t ) > a > m i n ( a ~ ,  Gt), 

so  t h a t  t h e  q u a n t i t y  Ode p l a y s  t h e  r o l e  o f  an a v e r a g e  s t r e s s  on t he  b o t t o m  h o l e ,  e s p e c i a l l y ,  
since the exact rounded form of the bottom hole, formed during the drilling process, is un- 
known. 

The criterion for failure of the bottom hole under the action of loads p and q can be 
written in the form 

o = ~a= q- 6p (! > 8 > O, a > p), ( 7 . 7 )  

where  Ode i s  t h e  s t r e n g t h  o f  t h e  r o c k  w i t h  u n i f o r m  b i a x i a l  c o m p r e s s i o n ;  6 i s  some e m p i r i c a l  
constant. 

With the help of Eqs. (7.6) and (7~ we obtain an expression for the limiting drill- 
ing depth H** in the case of reinforcement of the well shaft: 

Odc 

�9 t n 1 p~g(l--6)+e|/'pp~ --TPH----~-p~ 
For example, for p = 1.7PH, 6 = 1/2, PHg : 2 g/cm s, adc= 20 kg/mm 2, H** = 20 km. For rocks 
with lower strength, this depth can be much less. For H > H**, self-sustaining fracture of 
the bottom hole occurs. 

In a similar way, it is possible to estimate the stresses on the bottom hole of an unre- 
inforced well, but this estimate is of less interest, since in this case, large stresses oc- 
cur on the well walls far away from the bottom hole. 

The results obtained on stability and cavern formation in rocks can be generalized, as- 
suming that in all of the equations presented above, the quantity a c is a function of tempera- 
ture and loading time; for example, according to the analogy between temperature and time, 
it is natural to take the following dependence: 
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RF i n  T \ 
~c = ~ec, i - -  T ~o)' 

where T is the time from the moment that the bottom hole passes the volume of rock examined; 
oco and To, some experimentally determined constants, which do not depend on temperature and 
time; T, absolute temperature; R, gas constant; U, activation energy. In this case, the loss 
of stability and cavern formation will begin in the higher sections of the unreinforced well 
in the homogeneous rock; layered rocks can be taken into account using the same equations. 
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PERIODIC PROBLEM OF THE INTERACTION OF SYSTEMS 

OF CIRCULAR OPENINGS AND STRINGERS 

M. Z. Vulitskii and I. D. Suzdal'nitskii UDC 539.319 

Problems involving interaction of different types of concentrators, viz., openings, cuts, 
rigid edges (stringers), arising in technology have been the subject of a number of investi- 
gations, which are reviewed in [i, 2]o In particular, the interaction of an opening with one 
and two stringers was examined in [i, 3], and the interaction of a periodic system of cuts 
and stringers was examined in [4]o 

In this paper, we examine the mutual effect of a periodic system of circular openings, 
situated along a straight line, and a periodic system of stringers, orthogonal to this 
straight line. In this case, it is important to combine the methods in [i, 4, 5], developed 
for singular concentrators, with the techniques for solving problems on the weakening of a 
surface by an opening and a periodic system of openings [6, 7]. 

We shall examine a plate, consisting of a periodic system of circular openings and a 
periodic system of stringers (Fig. i). The centers of the openings Yk (k = 0, • • ...) 
are situated on the straight line y = 0 at the points x k = 2kb, and the radii of the openings 
equal p(p < b). The stringers F k continuously fixed to the plate have the same length 2a 
(a < b), perpendicular to the straight line y = 0 and intersected at the points x k = (2k + 
l)b. The stringers do not resist bending and function only under tension; E, v, and h are, 
respectively, the elastic modulus, Poisson's coefficient, and the thickness of the plate; 
Eo, and So are the elastic modulus and surface area of the transverse section of a stringer. 

For the elements in the elastic fields the following notation is used: ax, Oy, Txy , 
stress components; u, v, components of the displacements of the plate; N(y), normal force in 
the section of a stringer; e~ relative elongation of its axis. 
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